call us : +8613866722531

send a message : pweiping@techemi.com

Search
Home fatty-alcohol-ethoxylate-4mol-laureth-4-aeo4-cas-no-68439-50-9

New Products

latest news

Chinese National Day

Chinese National Day

Dear Customer: Hello! Thank you for your continued support for our company. The National Day is coming. In order to allow our employees to enjoy this important holiday, we will make the following adju...

view :

  • APG 0810

    APG 0810 CAS : 68515-73- 1

    Product details: APG 0810 CAS NO. 68515-73- 1 Payment:T/T Min order:1000kg Lead time:7-15 days

    Tags : APG 0810 CAS : 68515-73- 1 wholesale APG 0810 High quality APG 0810 APG 0810 suppliers factory price APG 0810

  • APG1214

    APG1214 CAS NO. 110615-47-9

    Product details: APG1214 CAS NO. 110615-47-9 Payment:T/T Min order:1000kg Lead time:7-15 days

    Tags : APG1214 CAS NO. 110615-47-9 APG1214 CAS NO. 110615-47-9 APG1214 raw materials hot sale APG1214 high quality APG1214

  • Cetanol

    Cetanol CAS NO.36653-82-4

    Product details: Cetanol CAS NO. 36653-82-4 Payment:T/T Min order:1000kg Lead time:7-15 days

    Tags : Alcohol, C16 Cetanol CAS NO.36653-82-4 Cetanol CAS NO.36653-82-4 1-Hexadecanol Cetyl Alcohol

  • 1-Octadecanol

    1-Octadecanol CAS No.112-92-5

    Product details: 1-Octadecanol  CAS NO. 112-92-5 Payment:T/T Min order:1000kg Lead time:7-15 days

    Tags : 1-Octadecanol CAS No.112-92-5 1-Octadecanol CAS No.112-92-5 Hot sale 1-Octadecanol high quality 1-Octadecanol 1-Octadecanol raw materials

  • k3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid

    k3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid CAS NO.500011-86-9

    Product Name:k3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid CAS NO. 500011-86-9 Payment:T/T Min order:1000kg Lead time:7-15 days

    Tags : K acid Wholesale K acid k3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid CAS NO.500011-86-9 K acid suppliers high quality K acid

  • 2-Hydroxypropyl methacrylate

    2-Hydroxypropyl methacrylate

    nature Hydroxypropyl methacrylate (HPMA) is a commonly used polymer material. 1. Appearance: The appearance of hydroxypropyl methacrylate is a colorless transparent liquid 2. Solubility: Soluble in water and also in most organic solvents, such as alcohols, ethers, esters, and aromatics. 4. Density: The density of hydroxypropyl methacrylate is 1.11-1.18 g/cm3. 6. Chemical stability: It has good chemical stability, is not easy to decompose, and will not react with most chemical substances. 7. Thermal stability: Hydroxypropyl methacrylate has good thermal stability, and its thermal stability is relatively high at high temperatures. 8. Oxidation stability: It has a certain resistance to oxidation and is not prone to oxidation and deterioration. Preparation 1. Add initiators such as hydroxypropyl methacrylate (HPMA) and hydrogen peroxide to the reactor, as well as an appropriate amount of solvents (such as methanol, ethanol, etc.). 2. Seal and shake the reaction kettle or heat it to react, causing the initiator to crack at an appropriate temperature, resulting in free radical polymerization of HPMA. After the reaction is completed, precipitate or precipitate the product with acidic water or organic solvents. 4. Filter and collect the product, wash and dry to obtain the pure product. The above is a simple preparation process for hydroxypropyl methacrylate, and the specific operating parameters and process flow may vary depending on different preparation methods and requirements. application 1. Paint and ink industry: it can be added to paint and ink as lotion and diluent to improve its viscosity, rheology and adhesion. 2. Cosmetics: Can be used in cosmetic products, such as hair gel, curling agents, sunscreen, etc., to thicken, moisturize, and prevent sun damage. 3. Daily necessities: It can be added as a thickener to daily necessities, such as detergents, facial cleansers, toothpaste, etc. 4. Pharmaceutical field: It can be used in drug sustained-release systems, such as artificial joint lubricants or eye drops for injection. In the future, with the continuous development of technology, the application prospects of hydroxypropyl methacrylate will become increasingly broad. For example, in the fields of biomedicine and drug delivery, cell delivery, and the preparation of nanomaterials, polymer materials such as hydroxypropyl methacrylate are also useful

    Tags : 2-Hydroxypropyl methacrylate 2-HPMA

  • 2-Hydroxy Ethyl Methacrylate CAS: 868-77-9

    2-Hydroxy Ethyl Methacrylate CAS: 868-77-9

    Hydroxyethyl methacrylate (HEMA) is a non-toxic, harmless, and widely used reagent, commonly used for soft lens materials, lens materials, or as a monomer for preparing dense ceramics and glass. Polyhydroxyethyl methacrylate (PHEMA) is a promising biopolymer with significant inertness, biocompatibility, and insolubility. Method 1: Place 100 ml of toluene, 62.1 (1 mol) parts of ethylene glycol, and enzymes (Novozym 435, 0.04 parts, 0.01 parts of sodium carbonate, and 0.01 parts of hydroquinone manufactured by Novo) into a 1-liter glass flask connected to a cooling tube receiver (for measuring moisture) and a reflux side tube, and heat to 40 ° C. 72.1 parts (1mol) of acrylic acid were added in batches within 10 minutes, while stirring step by step. After completing the total addition, the mixture was stirred at the same temperature under reduced pressure of 10mPa. After the reaction, the target acrylate was obtained by filtering and separating the catalyst and additives. The time required for the reaction is approximately 6 hours. The yield and composition of the obtained acrylate were determined by gas chromatography (hereinafter abbreviated as GC). [0044] [Example 2] [0045] Except for changing 72.1 parts (1 mol) of acrylic acid to 86.1 parts (1 mol) of methacrylic acid in Example 1, the target compound was obtained in a similar manner to Example 1. The time required for the reaction is approximately 5 hours. The yield of hydroxyethyl methacrylate (HEMA) was 98.5% by gas chromatography. The synthesis is continuous as shown in Figure 1. Method 2: Add 31.05g ethylene glycol (EG, 0.5mol), 47.35g (0.55mol) methacrylic acid, 40g (inside, 22g water in the catalyst before use, 18g dry weight) strong acid ion exchange resin (Amberlite IR124: gel type, 12% cross-linking degree, no pore), 0.086g HO-TEMPO, 0.086g hydroquinone and 200g toluene into a 500ml glass flask equipped with Dean Stark device, cooling pipe, thermometer and air inlet pipe, Then heat and stir at 100 ℃, while using a pump to add water at a rate of 2g/h. The water formed in the reaction is azeotropic with toluene and removed through the Dean Stark device. After 5 hours, the conversion rate of hydroxyethyl methacrylate was 87.3%. The synthesis is continuous as shown in Figure 1. purpose Hydroxyethyl methacrylate is mainly used for modifying resins and coatings. Copolymerization with other acrylic monomers can produce acrylic resins with active hydroxyl groups in the side chains, which can undergo esterification and crosslinking reactions, synthesize insoluble resins, improve adhesion, and can be used as fiber treatment agents. It reacts with melamine formaldehyde (or urea formaldehyde) resin, epoxy resin, etc. to manufacture two component coatings. Adding it to high-end car paint can maintain the mirror gloss for a long time. It can also be used as an adhesive for synthetic textiles and as a medical polymer monomer

    Tags : 2-Hydroxy Ethyl Methacrylate CAS: 868-77-9 C6H10O3 HEMA

  • 2-hydroxy ethyl methacrylate CAS: 868-77-9

    2-hydroxy ethyl methacrylate CAS: 868-77-9

    Hydroxyethyl methacrylate (HEMA) is a non-toxic, harmless, and widely used reagent, commonly used for soft lens materials, lens materials, or as a monomer for preparing dense ceramics and glass. Polyhydroxyethyl methacrylate (PHEMA) is a promising biopolymer with significant inertness, biocompatibility, and insolubility. Method 1: Place 100 ml of toluene, 62.1 (1 mol) parts of ethylene glycol, and enzymes (Novozym 435, 0.04 parts, 0.01 parts of sodium carbonate, and 0.01 parts of hydroquinone manufactured by Novo) into a 1-liter glass flask connected to a cooling tube receiver (for measuring moisture) and a reflux side tube, and heat to 40 ° C. 72.1 parts (1mol) of acrylic acid were added in batches within 10 minutes, while stirring step by step. After completing the total addition, the mixture was stirred at the same temperature under reduced pressure of 10mPa. After the reaction, the target acrylate was obtained by filtering and separating the catalyst and additives. The time required for the reaction is approximately 6 hours. The yield and composition of the obtained acrylate were determined by gas chromatography (hereinafter abbreviated as GC). [0044] [Example 2] [0045] Except for changing 72.1 parts (1 mol) of acrylic acid to 86.1 parts (1 mol) of methacrylic acid in Example 1, the target compound was obtained in a similar manner to Example 1. The time required for the reaction is approximately 5 hours. The yield of hydroxyethyl methacrylate (HEMA) was 98.5% by gas chromatography. The synthesis is continuous as shown in Figure 1. Method 2: Add 31.05g ethylene glycol (EG, 0.5mol), 47.35g (0.55mol) methacrylic acid, 40g (inside, 22g water in the catalyst before use, 18g dry weight) strong acid ion exchange resin (Amberlite IR124: gel type, 12% cross-linking degree, no pore), 0.086g HO-TEMPO, 0.086g hydroquinone and 200g toluene into a 500ml glass flask equipped with Dean Stark device, cooling pipe, thermometer and air inlet pipe, Then heat and stir at 100 ℃, while using a pump to add water at a rate of 2g/h. The water formed in the reaction is azeotropic with toluene and removed through the Dean Stark device. After 5 hours, the conversion rate of hydroxyethyl methacrylate was 87.3%. The synthesis is continuous as shown in Figure 1. purpose Hydroxyethyl methacrylate is mainly used for modifying resins and coatings. Copolymerization with other acrylic monomers can produce acrylic resins with active hydroxyl groups in the side chains, which can undergo esterification and crosslinking reactions, synthesize insoluble resins, improve adhesion, and can be used as fiber treatment agents. It reacts with melamine formaldehyde (or urea formaldehyde) resin, epoxy resin, etc. to manufacture two component coatings. Adding it to high-end car paint can maintain the mirror gloss for a long time. It can also be used as an adhesive for synthetic textiles and as a medical polymer monomer

    Tags : CAS No. 868-77-9 2-hydroxy ethyl methacrylate

<< 41 42 43 44 45 46 47 48 49 50 >>
[  a total of  54  pages]
 
chat now please click here for inquiry
If you have questions or suggestions,please leave us a message,your inquiry will be replied within 12 hours.